結構工程 第二十八卷第二期 民國一〇二年六月,第101-123頁 Structural Engineering Vol. 28, No2, June 2013 pp.101-123

# 風力發電機葉片結構受颱風侵襲 之表面開裂機制與災因探討

周瑞生<sup>\*</sup> 邱建國<sup>\*\*</sup> 紀凱甯<sup>\*\*\*</sup> 黃一桂<sup>\*\*\*</sup>

# 摘要

能源安全、永續發展與環境保護,為近年 來國際間備受矚目的議題,世界先進國家無不 投注大量資金發展再生能源系統。在此風潮與 趨勢下,風力發電成為台灣極具潛力的新興能 源之一。然而,在政府及民間企業大力推廣風 力發電建設之際,西元 2008 年 9 月 28 日於台 中彰濱工業區裝設之大型風力發電機組疑受 薔蜜(Jangmi)颱風之強風豪雨侵襲,造成位於 場區內 5 座大型風力發電機之葉片產生表面 剝離與裂縫。為探討本事故致災因子及葉片剝 離破損之觸發機制,本文以個案分析方式,首 先針對工程文件進行資料複核與研析,並統整 國外類似案例,歸納風機葉片災損事故之常見 災因。接續,根據資料複核的內容,進行風機

\* 國立台灣科技大學營建工程學系教授
 \*\* 國立台灣科技大學營建工程學系副教授
 \*\*\* 國立台灣科技大學營建工程學系博士生
 \*\*\*\*國立台灣科技大學營建工程學系碩士生

葉片結構力學行為模擬,分析研判可能之致災 機制,並提出災損防阻建議。研究成果期能應 用於實務所需,防止爾後類似的工程事故,並 可回饋利害關係人於風險管理強化與防災因 應策略研擬。

關鍵字:風力發電、葉片損壞、致災因子、結構 力學行為、共振模態分析、風險管理

# - 、研究緣起與目的

西元 2008 年 9 月 27-29 日強烈颱風『薔 蜜』重創台灣,而於台中彰濱工業區設置之風 力 發 電 機 回 傳 之 最 大 風 速 讀 數 亦 超 過 53m/sec。颱風離境後,風機所有權人派遣維 修勘查小組作例行性巡查即發現位於場區之 五組風機(#11、#12、#14、#15、#23)計有七支 葉片出現破損、裂縫、葉緣表層剝離等情形, 詳圖一所式。經風機原廠供應商判定其中六支 葉片需更換(不宜修補),另有一葉片可進行修 補(已於修補後重新安裝至風機)。受損風機之 地理位置(圖二)位於臺灣彰化縣西北方、距大 肚溪出海口南方約5公里之彰濱工業區,此工 業區共劃分成線西區、崙尾區及鹿港區,而此 次災損案件之受損風力機組皆位於崙尾區。



#### 圖一 葉片受損類型

為瞭解葉片在強風吹襲下剝離破損之觸 動機制,本研究透過現地勘查、材料試驗與相 關文獻建立風機葉片模型並進行風機葉片結 構力學模擬,綜合研析可能之致災原因,最終 針對葉片結構表層剝離機制與主要災因提出 研究結論與災損防阻建議,期望減少未來類似 意外災害之發生。



# 圖二 受損風機地理位置

# 二、文獻探討

本節首先針對再生能源現況進行瞭解與 調查,從時代趨勢突顯風力發電產業的重要 性。其次為蒐集國外有關風機葉片事故之歷史 資料,透由統計分析歸納常見致災因子,作為 本次事故的歷史殷鑑。最後概述工程鑑識應用 與效益,作為後續系統化工程分析與災因辨識 之文獻依據。

# 2.1 再生能源

現今人類社會賴以生產與活動所使用的

能源仍有將近 90%來自石化燃料的燃燒所產 生的電力,故其伴隨的二氧化碳排放與經濟發 展難以脫勾(Young Ku 2009)。根據國際能源署 (International Energy Agency, (<u>IEA 2009</u>)的統 計與預測顯示,全球未來與能源相關的二氧化 碳排放量仍持續增加;而聯合國「跨政府間氣 候 變 遷 小 組 (Intergovernmental Panel on Climate Change, IPCC)」表示,若人類置暖化 現象不理,則 2100 年大氣中二氧化碳濃度將 可高達 540 至 970 ppm 間,此濃度足以提高地 表溫度攝氏 1.4 至 5.8 度,並導致全球海平面 提升 0.1 至 0.9 公尺。此外, IEA 的「2009 年 世界能源展望報告(World Energy Outlook 2009)」指出,全球能源需求仍不减反增,主 要能源需求由 2007 年至 2030 年間預計增長 40% (IEA 2009)。

龐大的能源需求以及二氧化碳排放量不 斷增加等問題,對自然資源及環境帶來難以想 像的劫難。有鑑於此,具低碳且可減緩溫室氣 體排放特性之永續能源研究與開發,儼然成為 世界各國在新能源政策佈局中積極推動之目 標。根據 IEA 統計,目前全球至少有超過40 個國家訂定再生能源發展政策,預估再生能源 發電占總發電量之比例,將由2005年的18% 提升至2050年的46%。

國內對再生能源則積極著墨於政府與企 業發展政策上,如經濟部能源局推動之「再生 能源發展條例」已於 2009 年 6 月 12 日完成立 法,並於 2010 年 1 月啟動,預期提高自產能 源並促進能源多元化、溫室氣體減量、帶動新 興再生能源產業發展 (Huang 2008),風力發電 即為國內積極扶植之新興能源產業之一。爰 此,除能維持風機營運的正常運轉,面對臺灣 之海島型氣候及經年頻繁的強風豪雨,發電機 組之可能致災因子,實有值得探討的必要性。 本研究延續文獻 (Chou and Tu 2011)蒐集 國外有關風力發電機組損壞之相關案例並進 行分類統整,藉以深入了解一般風力發電機葉 片損壞之可能致災原因與潛在危險因子。

本節所統整之案例資料係從官方資料 (http://www.caithnesswindfarms.co.uk/page4.ht m)或新聞報導查證,原始資料截至 2011 年 6 月底止,有歷史紀錄風力機組相關災損案共 1,026 件,歸類為「葉片損壞」之案件數佔所 有案件之 20.3%(計 208 件)。但案件數次之者 為「其他」約佔 18.6%(計 191 件),此類未界 定損壞類型之災害,可能因災損調查報告並未 公開或其他因素無從得知。

因此,若扣除「其他」項目後,案件總數 則減為 835 件,圖三顯示「葉片損壞」比例由 原 20.3%提升至 24.9%。換言之,已界定災損類 型之案件有接近 1/4 被歸類為葉片損壞事故,其 餘致災因子依發生頻率高至低分別為火災事故 (fire, 19%)、結構損壞(structural failure, 13.9%)、 環境影響(environmental damage, 10.7%)、傷害性 意外(human injury, 9.9%)、致命性意外(fatal accidents, 9.0%)、運輸意外(transport, 8.9%)、冰 雹事故(ice throw, 3.7%)。由前述統計分析可初 步辨識葉片損壞確為風力發電機組最常見之災 損類型,從風險管理的角度亦突顯優先考量風 機葉片災損機制之重要性。

## 2.2 國際相關案例



圖三 風機災損類型分佈圖(扣除其他災損案例)

## 2.3 工程鑑識科學方法

基礎設施受極端氣候影響甚而引致災 害,使得鑑識工程(forensic engineering)成為近 年逐漸重視之領域,基於以事實為基礎論證的 系統化分析流程可協助工程師進一步瞭解工 程設施之事故形成的可能原因(Athiniotis et al. 2009; Athiniotis et al. 2010), 更可回饋於設計 施工階段,提供不同於品質、成本或工期等傳 統思維,降低設施未來損害風險或面對事故後 續處理之困擾(Brown 2007; C. Roarty 2006; Hou et al. 2002)。而對於工程整體而言,如有 類似工程事故鑑識報告回饋,即可根據先例從 專案生命週期起始時之規劃設計階段便納入 結構體未來可能之影響,除能有效防阻未來工 程風險,更能強化工程績效、增加安全性與降 低風險成本(C. Roarty 2006; Chen et al. 2005; López Gayarre et al. 2009; Noon 2000; Zimmer 2006)。本文後續即以風力發電機葉片災損, 提出本案系統化鑑識調查方法,包括管理科學 邏輯、實證試驗與科學化結構分析(Marín et al. 2009; Mazur et al. 2008; Prasad Rao et al. 2012),期能作為爾後非工程專業人員於類似 災損分析之標準作業流程參考範例。

# 三、研究方法

## 3.1 研究流程

災損事故可能由多個因子或其複合作用 所引起(Choi and Mahadevan 2008; Yates and Lockley 2002),故可將調查程序及所需查驗之 作業依圖四之分化流程(divide-and-conquer)進 行災損事故調查,過程中包括蒐集相關工程資 料與歷史案例,現地踏勘瞭解案例背景,並進 行相關模擬分析,研判可能之致災因子。



圖四 風機葉片災害事故調查流程圖

圖五 結構力學行為分析流程圖

## 3.2 結構分析材料參數取得流程

本研究對於葉片材料相關之結構力學模擬係採用『ANSYS』(結構工程分析系統套裝軟體)作為葉片力學行為分析之工具軟體, ANSYS現今已廣泛應用於航太工業(Farrahi et al. 2011)、土木建築工程(Khalaf and Seibi 2011)、能源產業(Sankar et al. 2011)及各構造 物件受力分佈等相關分析。惟分析前須建置 3D幾何模型並輸入相關材料參數,方得以力 學學理基礎進行運算與模擬。圖五為進一步呈 現本案力學行為分析流程圖,後續章節將依序 闡述主要步驟。

# 四、分析案例基本資料

### 4.1 風力發電機組簡介

調閱設計圖說主要的目的為瞭解風力葉 片幾何結構,以利後續結構模型建置。透過原 廠設計圖(Vestas 2003)與現地查勘災損葉片, 可知單一葉片重量約為 6.5 公噸(14500lbs),其 餘葉片部位尺寸如圖六所示由中心(hub)至葉 片末端約為 39.5m,葉片最寬處約 3.317m,末 端寬度約為 0.497m。



圖六 V80 風機尺寸標註圖(單位:m)

# 4.2 風機量測之風速資料

圖七為 2008 年 9 月 27 日 上午 8 時 30 分至 29 日 16 時 30 分薔密颱風發布陸上颱風 警報期間平均最大風速紀錄。 颱風期間各風機艙感測裝置所紀錄之最 大風速(ambient wind speed max)約為 53.4m/sec(Taipower 2009),各風力機組之風速 讀數雖有些微差異,但瞬間風速皆曾達 50m/sec以上。



圖七 薔密颱風發布陸上警報期間風機艙感測之平均最大風速紀錄

# 五、3D 葉片建模與力學行為分析

# 5.1 幾何圖形掃描與建構

本研究利用泛用型有限元素法軟體 (ANSYS)協助分析風機葉片受不同風速時,可 能產生之應力與應變行為。首先需依實際尺寸 建立葉片結構幾何模型,再依尺寸座標匯入軟 體執行分析,即可模擬於設定條件與破壞準則 下之受力及變形機制。分析結果利於比對葉片 實際之破壞部位,並藉以判別葉片損壞之臨界 風速。

現地風機葉片之全尺寸掃描前置作業包含:斷 面點位清潔擦拭(如圖八(a))、黏貼雷射定位貼 紙(如圖八(b))與乒乓球黏置作業(如圖八(c))。 乒乓球需固定於葉片上下兩端頂點,每道斷面 黏貼四顆以作為斷面定位基準。

葉片全景詳圖八所示,拍攝方向為風機葉 片之迎風面(A 側,背風面為 B 側)。圖中可見 鋼製底座將葉片騰空架置,底座約1公尺高, 使得葉片底部具有足夠空間進行儀器掃描;葉 片結構物全長約40公尺,最寬處約3.3公尺, 全景圖中亦標註掃描之斷面位置,由轉子處起 算共計分為編號 1~12 道斷面。

值得注意的是,斷面 1~6 區塊間距安排較 為密集,乃由於此部分形狀較複雜。其中,除 斷面 1、2 因位於風機組轉子嵌合處形狀較趨 近圓形外,斷面 3~6 為葉片斷面變化最為劇烈 之部位。相較之下,斷面 7~9 之橫向與縱向外 型變化則較為平緩,因此該區段之掃瞄點位距 離設置最疏。然而,點位距離次密集者為斷面 10~12,此部位為葉片末端閉合區段,表面形 狀明顯快速收斂。

掃描作業完畢後,將實測原始資料(圖九 (a))匯出,但原始資料僅能顯示各道斷面之範 圍與輪廓,仍無法直接採用,尚需將原始資料 匯入電腦繪圖軟體(SolidWorks 2009),建立斷 面幾何模型,並標示各斷面之編號(圖九(b))。 最後,再透過設定座標和介面拉伸之功能以及 適度的平滑內插處理,逐步將葉片外觀繪製成 形。

茲將幾何模型繪製過程分為三階段:(1) 點位資料座標設定、(2)斷面延伸與修補以及(3) 葉片內部結構設置,並扼要描述於後。





(a)斷面點位清潔擦拭

(b)黏貼雷射定位貼紙 圖八 葉片全景與掃描前置作業示意圖 (c)乒乓球黏置作業

## 步驟 1:點位資料座標設定

根據 12 道斷面配置(如圖八),於現地架設 雷射測距儀量測各道斷面與轉子端頂點之距 離列於表一。表中數值為從葉片轉子接合處開 始計算,定義長度方向位置後,即可根據點位 座標配合 3D 電腦繪圖軟體(SolidWorks)進行 幾何模型繪製。

步驟 2:斷面延伸與修補

模型繪製完成後,形狀相似之斷面可透過 軟體中『拉伸』功能繪出斷面間合理之柱狀延 伸。前端變化較大之斷面,則透過『邊界曲面』 功能作不規則形狀之平滑修補,詳圖九(c)。 步驟 3:葉片內部結構設置

依上述方式將各個斷面修補接合後,即可 繪製如圖九(d)之葉片幾何模型。然此類型風機 葉片內部設計有箱型樑(box-spar)。為模擬力學

行為,尚需定義模型內部箱型樑位置(圖九 (d)),該構造可概分為 X 方向與 Y 方向兩種設 置,為風機葉片強度之主要來源。 表一 斷面編號與距離(單位:m)

| 斷面編號  | 距轉子端頂點 (m) |
|-------|------------|
| 斷面 1  | 0.84       |
| 斷面 2  | 1.25       |
| 斷面 3  | 3.28       |
| 斷面 4  | 4.88       |
| 斷面 5  | 6.44       |
| 斷面 6  | 8.05       |
| 斷面 7  | 13.28      |
| 斷面 8  | 18.46      |
| 斷面 9  | 22.46      |
| 斷面 10 | 27.61      |
| 斷面 11 | 32.83      |
| 斷面 12 | 38.63      |
| 總長    | 39.5       |

# 5.2 葉片鑽孔取樣與材料試驗

(1) 鑽孔作業

為探求風機葉片沿縱軸向之壁體厚度變 化,於現地使用電鑽配備專用轉接器加裝切削鑽 頭(深度約 38mm)鑽取受損葉片表層樣體。圖十(a) 與(b)為鑽孔作業流程,需注意鑽孔時應保持高轉 速模式切削推入,以利取得完整樣體。

(2) 取樣作業

圖十(c)與(d)為現地量測放樣完成後之區塊 取樣流程。首先,使用手持式圓鋸機沿放樣線割 劃引道,以確保取樣區塊外型之完整性。而後, 順引道利用鋸刀進行第二次深入切割。取得之葉 片樣本則依下述標準規範進行材料試驗,推求風 機葉片材料力學性質。

(3) 材料試驗

風機葉片材料試驗規劃為兩組,一組為撓曲 試驗,其試驗材料係從取樣之區塊樣片直接分切 為15件完整試體(複合材料);另一組為單獨分離 表面玻璃纖維強化塑膠(Glass Fiber Reinforced Plastic, GFRP)之材料層(單一材料)進行拉伸試 驗。



(d)拉伸完成及內部箱型樑配置圖圖九 風機葉片外觀幾何模型建置作業流程



圖十 鑽孔取樣作業圖

依照中國國家標準(Chinese National Standards, CNS) 12779 中 5.3.1 節(Bureau of Standards Metrology & Inspection 2005)之規定,每組試驗試片數量需至少五組以上。又風機葉片表面蒙皮材料分為內層、外層兩組,因此拉伸試驗共計10組試體。

在撓曲試驗中,由於試驗樣本為複合材料常

見之夾層結構,為考量實驗裝置,切削之形狀為 經由專業評估後之建議尺寸(SGS Taiwan Ltd. 2011),於破壞後透由最大荷重力及破壞斷面之截 面積作為計算強度之依據,試驗儀器與樣本設置 如圖十一(a)所示,所有試體皆受向下載重至產生 完全破壞為止,試體樣本破壞照片如圖十一(b) 所示,撓曲試驗之結果彙整如表二所示。



圖十一 風機葉片材料試驗(單位:cm)

| 计雕力论     | (翼厚)max/ | ´(翼厚)mir | n 破壞 | 斷面  | 破壞點斷面積   | 最大荷重    | 破壞面接      | <b>善曲應力</b> |
|----------|----------|----------|------|-----|----------|---------|-----------|-------------|
| <b> </b> | (cn      | n)       | (c   | m)  | $(cm^2)$ | (N)     | $(N/m^2)$ | 平均          |
| A1#1     | 2.8      | 2.5      | 2.0  | 1.3 | 6.60     | 2711.66 | 37.35     |             |
| A1#2     | 2.5      | 2.1      | 2.1  | 1.8 | 7.80     | 2760.95 | 27.23     | 29.18       |
| A1#3     | 3.2      | 2.8      | 2.5  | 2.1 | 9.20     | 3238.80 | 22.96     |             |
| A2#1     | 4.4      | 4.4      | 2.9  | 2.7 | 11.2     | 9790.10 | 46.83     |             |
| A2#2     | 4.2      | 3.9      | 3.1  | 2.9 | 12.0     | 7385.97 | 30.77     | 38.32       |
| A2#3     | 4.3      | 4.3      | 3.1  | 2.9 | 12.0     | 8964.84 | 37.35     |             |
| A3#1     | 3.6      | 3.3      | 2.5  | 2.5 | 10.0     | 3413.93 | 20.48     |             |
| A3#2     | 3.3      | 2.9      | 2.3  | 2.1 | 8.80     | 4402.26 | 34.11     | 34.29       |
| A3#3     | 2.6      | 2.2      | 1.8  | 1.6 | 6.80     | 3720.77 | 48.28     |             |
| B1#1     | 5.3      | 5.3      | 3.7  | 3.7 | 14.8     | 6548.26 | 17.94     |             |
| B1#2     | 5.3      | 5.3      | 3.9  | 3.9 | 15.6     | 4857.37 | 11.98     | 16.42       |
| B1#3     | 5.3      | 5.3      | 3.8  | 3.7 | 15.0     | 7053.65 | 18.81     |             |
| B2#1     | 3.8      | 3.8      | 2.8  | 2.7 | 11.0     | 6065.02 | 30.07     |             |
| B2#2     | 3.7      | 3.7      | 2.9  | 2.8 | 11.4     | 4717.62 | 21.78     | 24.11       |
| B2#3     | 3.9      | 3.8      | 2.9  | 2.9 | 11.6     | 4593.26 | 20.48     |             |
|          |          |          |      |     |          | 應力總平均   | 1         | 28.43       |

表二 撓曲試驗結果

◎註:A:風機葉片迎風面;B:風機葉片背風面。

拉伸試驗係依 CNS 12779 之規定(Bureau of Standards Metrology & Inspection 2005),先 將材料裁切成制式規格,圖十一(c)為拉伸試驗 試體及儀器示意圖,紅色光為光學式應變感應 器所投射出光線,其利用試體上以黑筆畫之黑 圓點作為定位點並於拉伸試驗過程中回傳應 變量測資料於資料伺服器,表三為拉伸試驗之 資料彙整(SGS Taiwan Ltd. 2011)。

表三 葉片材料拉伸試驗數據

|      | 葉片材料內側拉伸試驗結果 |       |       |          |          |           |      |      |  |
|------|--------------|-------|-------|----------|----------|-----------|------|------|--|
| 試片名  | 厚度           | 寬度    | 標線間距  | 速率       | 最大荷重     | 拉伸應力      | 拉伸應變 | 浦松   |  |
| 稱    | (mm)         | (mm)  | (mm)  | (mm/min) | (N)      | $(N/m^2)$ | (%)  | 比    |  |
| A1 內 | 1.90         | 26.09 | 50.87 | 1.00     | 13840.44 | 2.79      | 1.58 | 0.81 |  |
| A2 内 | 1.94         | 25.63 | 51.02 | 1.00     | 14058.00 | 2.83      | 1.36 | 0.72 |  |
| A3 内 | 1.06         | 25.38 | 50.52 | 1.00     | 8505.130 | 3.16      | 1.86 | 0.97 |  |
| B1 內 | 2.03         | 25.35 | 49.83 | 1.00     | 13249.40 | 2.57      | 1.58 | 0.47 |  |
| B2 內 | 1.78         | 25.35 | 50.96 | 1.00     | 13497.54 | 2.99      | 1.89 | 0.81 |  |
| 平均值  | 1.74         | 25.56 | 50.64 | 1.00     | 12630.10 | 2.87      | 1.65 | 0.76 |  |
|      |              |       | 葉片    | 材料外側拉伸   | r試驗結果    |           |      |      |  |
| A1 外 | 2.84         | 25.90 | 50.35 | 1.00     | 14313.59 | 1.95      | 1.53 | 0.36 |  |
| A2 外 | 2.77         | 25.59 | 49.53 | 1.00     | 14554.76 | 2.05      | 1.28 | 0.54 |  |
| A3 外 | 2.10         | 25.37 | 49.95 | 1.00     | 11969.43 | 2.25      | 1.65 | 0.65 |  |
| B1 外 | 2.81         | 25.76 | 50.53 | 1.00     | 11594.58 | 1.60      | 0.84 | 0.65 |  |
| B2 外 | 1.78         | 25.12 | 50.88 | 1.00     | 9348.12  | 2.09      | 2.70 | 0.76 |  |
| 平均值  | 2.46         | 25.55 | 50.25 | 1.00     | 12356.10 | 1.99      | 1.60 | 0.59 |  |

◎註:A:風機葉片迎風面;B:風機葉片背風面。

由於本次風機葉片材料藉由撓曲試驗及 拉伸試驗結果推算求得之材料數值皆為單向 (沿纖維方向),且由於複合材料特性不一緣 故,無法透過試驗測試取得單一材料之性質, 僅能得知該複合材料之破壞行為模式,故透過 文獻(陳興加 2007)及文獻(林輝政 2010)之材料 強度數值的整理,比照該測試結果做一材料性 質數值處理,其中浦松比數值經該測試結果皆 大於 0.5,一般材料之浦松比數值普遍不超過 0.5,故本文浦松比保守採用 0.5,本材料試驗 所得之材料參數列於表四所示,供後續力學模 擬分析之用。

|  | 表四 | 材料試驗 | 余所得さ | 材料 | 參數 |
|--|----|------|------|----|----|
|--|----|------|------|----|----|

| 參數                      | 數值 (GPa)   |
|-------------------------|------------|
| E <sub>x</sub>          | 44.65      |
| E <sub>y</sub>          | 12.96      |
| Ez                      | 12.96      |
| PR <sub>xy</sub>        | 0.500      |
| PR <sub>yz</sub>        | 0.500      |
| PR <sub>xz</sub>        | 0.500      |
| G <sub>x</sub>          | 4.320      |
| G <sub>y</sub>          | 4.320      |
| Gz                      | 4.320      |
| 密度(kg/mm <sup>3</sup> ) | 0.00001715 |

◎註:E:彈性模數;PR:浦松比;G:剪力模數。

# 5.3 葉片模型建置與材料參數選定

風機葉片內部構件形式與位置經由現地 試驗判定並輔採文獻(陳興加 2007)之建議,設 置腹板(shear web)於各斷面翼弦之 15%及 50% 兩處(圖十二),腹板間採厚實之翼梁蓋(spar caps)結構,葉片表層及內部上/下腹板均採用 三軸向玻璃纖維複合材料積層板(Tri-axial fabric)並以聚乙烯(Polyethylene)材料為核心之 夾心層結構。



圖十二 風機葉片翼型剖面結構示意圖

此外,為設定材質屬性,須將葉片結構作 適當切割處理,模型選用 Shell99 (8-nodes,3-D shell element with six degrees of freedom at each node)之薄殼元素(ANSYS Inc. 2006),該 元素適合葉片複合材料之特性,元素之實體常 數(real constant;可視為元素總類編號)可編輯 分層材料編號(material number)、纖維排列角 度及材料厚度參數。

葉片內部結構(structure-shell)實際組成方

式,部份係依文獻(陳興加 2007)建議之材料表 (如表五)定義,並結合本案例實際葉片材料試 驗結果,其中前/後腹板結構(shear web)置換為 聚乙烯(Polyethylene)材料,厚度設定係採文獻 (陳興加 2007)建議之伴隨厚弦比變化,並於聚 乙烯頂、底部兩面膠合 1.27mm 厚之三軸向玻 璃纖維層版,且因表皮膠凝體(Gel coat)所貢獻 之強度幾可忽略,故表六為簡化模型參數後之 葉片複層材料力學性質表。

| 材料編號No.<br>(material number) | 材質                        | 厚度(mm)     |
|------------------------------|---------------------------|------------|
| 1                            | 表皮膠凝體(Gel coat)           | 0.51       |
| 2                            | 混雜纖維層(Hybrid fiber mat)   | 0.38       |
| 3                            | 三軸組織(Tri-axial fabric)    | 1.27       |
| 4 0%-15% c                   | 聚乙烯(Polyethylene)         | 0.5% c     |
| 5 15%-50% c                  | 翼梁蓋複合材質(Spar cap mixture) | spec % t/c |
| 6 50%-100% c                 | 聚乙烯(Polyethylene)         | 1.0% c     |
| 7                            | 三軸組織(Tri-axial fabric)    | 1.27       |

◎ 註:c:弦長(chord);t:翼厚(thickness);t/c:翼剖面厚弦比;No.1~7 為葉片表面至內部 構造,由外而內之材料層序。

|                              |                    | 本研究材料參數      |                |                    |
|------------------------------|--------------------|--------------|----------------|--------------------|
|                              | 材料編號 No.2          | 材料編號 No.3    | 材料編號 No.4/6    | 材料編號 No.5          |
|                              | 混雜纖維層              | 玻璃纖維         | 聚乙烯            | 翼梁蓋複合材質            |
|                              | (Hybird fiber mat) | (GFRP)       | (Polyethylene) | (Spar cap mixture) |
| $E_x(GPa)$                   | 9.65               | 44.65        | 0.65           | 25.0               |
| $E_y(GPa)$                   | 9.65               | 12.96        | 0.65           | 9.23               |
| $E_z(GPa)$                   | 9.65               | 12.96        | 0.65           | 9.23               |
| $PR_{xy}$                    | 0.30               | 0.500        | 0.33           | 0.35               |
| $PR_{yz}$                    | 0.30               | 0.500        | 0.33           | 0.35               |
| PR <sub>xz</sub>             | 0.30               | 0.500        | 0.33           | 0.35               |
| $G_{xy}(GPa)$                | 3.86               | 4.320        | 0.25           | 5.00               |
| $G_{yz}(GPa)$                | 3.86               | 4.320        | 0.25           | 5.00               |
| $G_{xz}(GPa)$                | 3.86               | 4.320        | 0.25           | 5.00               |
| Density(kg/mm <sup>3</sup> ) | 0.00000167         | 0.00000175   | 0.000925       | 0.00000175         |
|                              | 採文鷹                | 忧(陳興加 2007)建 | 議參數            |                    |
|                              | 材料編號 No.2          | 材料編號 No.3    | 材料編號 No.4/6    | 材料編號 No.5          |
|                              | 混雜纖維層              | 玻璃纖維         | 巴沙木核心          | 翼梁蓋複合材質            |
|                              | (Hybird fiber mat) | (GFRP)       | (Balsa-core)   | (Spar cap mixture) |
| $E_x(GPa)$                   | 9.65               | 30.89        | 2.07           | 25.0               |
| $E_y(GPa)$                   | 9.65               | 7.38         | 2.08           | 9.23               |
| $E_z(GPa)$                   | 9.65               | 7.38         | 2.09           | 9.23               |
| $PR_{xy}$                    | 0.30               | 0.27         | 0.22           | 0.35               |
| PR <sub>yz</sub>             | 0.30               | 0.30         | 0.22           | 0.35               |
| PR <sub>xz</sub>             | 0.30               | 0.27         | 0.22           | 0.35               |
| $G_{xy}(GPa)$                | 3.86               | 3.52         | 0.14           | 5.00               |
| $G_{yz}(GPa)$                | 3.86               | 2.84         | 0.14           | 5.00               |
| $G_{xz}(GPa)$                | 3.86               | 3.52         | 0.14           | 5.00               |
| Density(kg/mm <sup>3</sup> ) | 0.00000167         | 0.00001715   | 0.0000144      | 0.00000175         |
|                              | 採文篇                | 式(林輝政 2010)建 | 議參數            |                    |
|                              | 材料編號 No.2          | 材料編號 No.3    | 材料編號 No.4/6    | 材料編號 No.5          |
|                              | 混雜纖維層              | 玻璃纖維         | 玻璃纖維           | 翼梁蓋複合材質            |
|                              | (Hybird fiber mat) | (GFRP)       | (GFRP)         | (Spar cap mixture) |
| $E_x(GPa)$                   | 9.65               | 37.98        | 37.98          | 25.0               |
| $E_y(GPa)$                   | 9.65               | 12.52        | 12.52          | 9.23               |
| $E_z(GPa)$                   | 9.65               | 12.52        | 12.52          | 9.23               |
| $PR_{xy}$                    | 0.30               | 0.487        | 0.487          | 0.35               |
| $PR_{yz}$                    | 0.30               | 0.487        | 0.487          | 0.35               |
| PR <sub>xz</sub>             | 0.30               | 0.487        | 0.487          | 0.35               |
| $G_{xy}(GPa)$                | 3.86               | 7.361        | 7.361          | 5.00               |
| $G_{yz}(GPa)$                | 3.86               | 7.361        | 7.361          | 5.00               |
| $G_{xz}(GPa)$                | 3.86               | 1.361        | 1.361          | 5.00               |
| Density(kg/mm <sup>3</sup> ) | 0.00000167         | 0.000015     | 0.000015       | 0.00000175         |

表六 葉片之複層材料力學性質表

風機葉片模擬過程係以線性分析為主,葉 片結構材料力學性質,分別為E(彈性模數)、 PR(浦松比)、G(剪力模數),各特性依座標方 向亦定義有 E<sub>x</sub>、E<sub>y</sub>、E<sub>z</sub>、PR<sub>xy</sub>、PR<sub>yz</sub>、PR<sub>xz</sub>、 G<sub>xy</sub>、G<sub>yz</sub>、G<sub>xz</sub>等九項。本研究僅採用葉片主 要材料為建模參數,表六所列參數為本案於葉 片複層之主要組成材料設定,包含文獻(陳興 加 2007)及文獻(林輝政 2010)對材料參數之定 義,並依圖十三所示將表七所列之各層材料依 實體常數名稱帶入所設定之區塊排列。

| 實體常數      | 材料编辑 No           | 纖維排列角    | 各層材料厚 | 音體堂數 No         | 材料編號 No.  | 織維排列角      | 各層材料厚 |
|-----------|-------------------|----------|-------|-----------------|-----------|------------|-------|
| (real     | (material number) | 度        | 度     | (real constant) | (material | 度(degree)  | 度     |
| constant) | (material number) | (degree) | (mm)  | (rear constant) | number)   | )X(degree) | (mm)  |
|           | 2                 | 0        | 0.38  |                 | 3         | 45         | 0.32  |
|           | 3                 | 45       | 0.32  |                 | 3         | 0          | 0.64  |
|           | 3                 | 0        | 0.64  |                 | 3         | -45        | 0.32  |
| set 1     | 3                 | -45      | 0.32  | set 5           | 5         | 0          | 15.85 |
| 500 1     | 6                 | 0        | 24.23 |                 | 3         | -45        | 0.32  |
|           | 3                 | -45      | 0.32  |                 | 3         | 0          | 0.64  |
|           | 3                 | 0        | 0.64  |                 | 3         | 45         | 0.32  |
|           | 3                 | 45       | 0.32  |                 | 3         | 45         | 0.32  |
|           | 2                 | 0        | 0.38  |                 | -3        | 0          | 0.64  |
|           | 3                 | 45       | 0.32  |                 | 3         | -45        | 0.32  |
|           | 3                 | 0        | 0.64  | set 6           | 5         | 0          | 14.85 |
| set 2     | 3                 | -45      | 0.32  |                 | 3         | -45        | 0.32  |
| 501 2     | 6                 | 0        | 24.12 |                 | 3         | 0          | 0.64  |
|           | 3                 | -45      | 0.32  |                 | 3         | 45         | 0.32  |
|           | 3                 | 0        | 0.64  |                 | 2         | 0          | 0.38  |
|           | 3                 | 45       | 0.32  |                 | 3         | 45         | 0.32  |
|           | 2                 | 0        | 0.38  |                 | 3         | 0          | 0.64  |
|           | 3                 | 45       | 0.32  | set 7           | 3         | -45        | 0.32  |
|           | 3                 | 0        | 0.64  |                 | 3         | 45         | 27.0  |
| set 3     | 3                 | -45      | 0.32  |                 | 5         | 0          | 9.97  |
| set 3     | 4                 | 0        | 22.52 |                 | 3         | -45        | 27.0  |
|           | 3                 | -45      | 0.32  |                 | 3 тао     | -45        | 0.32  |
|           | 3                 | 0        | 0.64  |                 | 3         | 0          | 0.64  |
|           | 3                 | 45       | 0.32  |                 | 3         | 45         | 0.32  |
|           | 2                 | 0        | 0.38  |                 | 2         | 0          | 0.38  |
|           | 3                 | 45       | 0.32  |                 | 3         | 45         | 0.32  |
|           | 3                 | 0        | 0.64  |                 | 3         | 0          | 0.64  |
| set 4     | 3                 | -45      | 0.32  |                 | 3         | -45        | 0.32  |
| set 4     | 4                 | 0        | 18.45 | set 8           | 3         | 45         | 19.5  |
|           | 3                 | -45      | 0.32  |                 | 5         | 0          | 24.6  |
|           | 3                 | 0        | 0.64  |                 | 3         | -45        | 19.5  |
|           | 3                 | 45       | 0.32  |                 | 3         | -45        | 0.32  |
|           |                   |          |       |                 | 3         | 0          | 0.64  |
|           |                   |          |       |                 | 3         | 45         | 0.32  |

表七 實體常數及各層材料角度與厚度對照表



圖十三 葉片實體常數(real constant;可視為元素總類編號)示意圖

## 5.4 破壞準則

國際間一般用於判斷纖維強化塑膠(Fiber Reinforced Plastic, FRP)複合材料之強度檢核 皆係使用蔡吳法則(Tsai-wu failure criterion)協 助研判材料是否已達破壞。公式 5-1 為判斷方 程式,值若大於 1 時,代表材料有破壞的疑慮 (Van Paepegem and Degrieck 2003)

$$F_{I}\sigma_{I} + F_{II}\sigma_{I}^{2} + F_{2}\sigma_{I} + F_{22}\sigma_{2}^{2} + F_{I2}\sigma_{I}\sigma_{2} + F_{66}\tau_{12}^{2} = 1$$

$$F_{I} = \frac{1}{X_{T}} + \frac{1}{X_{C}} \qquad F_{II} = \frac{-1}{X_{T}X_{C}} \qquad F_{2} = \frac{1}{Y_{T}} + \frac{1}{Y_{C}} \qquad (5-1)$$

$$F_{II} = \frac{-1}{Y_{T}Y_{C}} \qquad F_{66} = \frac{1}{S^{2}} \qquad F_{I2} = -0.5\sqrt{F_{II}F_{22}}$$

◎註:上式方程式代號僅表示準則中拉張、壓 縮強度與剪切強度間之運算關係。 其中,X<sub>r</sub>、X<sub>c</sub>與Y<sub>r</sub>、Y<sub>c</sub>分別代表沿纖維方向 與垂直纖維方向的拉張與壓縮強度,S代表剪 切強度。本研究以ANSYS內建之蔡吳法則進 行破壞評估,並以色階呈現其破壞程度與區 域,當中需有沿纖維方向、垂直纖維方向的拉 張與壓縮強度及各層間的剪切強度,由於該材 料測試僅作拉伸及撓曲試驗,僅得知沿纖維方 向之拉張強度,故本文研判破壞上限所需採用 之相關材料強度數值係根據文獻(陳興加 2007) 定義,並對纖維強化塑膠進行蔡吳法則之分 析,其強度數值詳表八所示。

表八 纖維強化塑膠複合材料於蔡吳法則設定參數表

| 纖維強化塑膠(Fiber Reinforced Plastic, | FRP)複合材料參數 |
|----------------------------------|------------|
| 沿纖維方向之拉張強度,X <sub>T</sub>        | 735.32 MPa |
| 沿纖維方向之壓縮強度,Xc                    | 539.66 MPa |
| 垂直纖維方向之拉張強度,Y <sub>T</sub>       | 50.336 MPa |
| 垂直纖維方向之壓縮強度 Yc                   | 134.54 MPa |
| 剪切強度,S                           | 25.116 MPa |

### 5.5 有限元素法分析

基於前述風機葉片取樣測試之實際材料 特性,另考量文獻(陳興加 2007)及(林輝政 2010)建議之材料參數值,模擬葉片分別於 50、53.4(薔密颱風期間風機所測得最大風 速)、60、70、80及90m/sec等六種風速條件 下之受力情形,其風速加壓方式設定垂直於葉 片模型之各節點上(如圖十四),並以蔡吳法則 作為判斷基準,檢核各模型之破壞型態與範 圍。根據破壞指數分析結果總表(表九)發現, 以在薔密颱風期間測得之最大風速 53.4 m/sec 的條件下,葉片於文獻(陳興加 2007)、(林輝 政 2010)建議參數與本研究藉由材料試驗所獲 得參數設定下皆無顯著破壞疑慮。

#### 116 結構工程 第二十八卷 第二期



圖十四 風速加壓方式設定於葉片模型圖

|   | 風速      | 採文獻( <u>陳</u> 9<br>建議之葉片 | <u>興加 2007</u> )<br><sup>-</sup> 材料模型 | 採文獻( <u></u><br>建議之葉 | <u>木輝政 2010</u> )<br>送片材料模型 | 本研究葉片 | 材料模型 |
|---|---------|--------------------------|---------------------------------------|----------------------|-----------------------------|-------|------|
|   | (m/sec) | 破壞指數                     | 破壞疑慮                                  | 破壞指數                 | 破壞疑慮                        | 破壞指數  | 破壞疑慮 |
|   | 50      | 0.166                    | 無                                     | 0.36089              | 無                           | 0.323 | 無    |
| ſ | 53.4    | 0.207                    | 無                                     | 0.44693              | 無                           | 0.399 | 無    |
| - | 60      | 0.283                    | 無                                     | 0.58345              | 無                           | 0.521 | 無    |
|   | 70      | 0.467                    | 無                                     | 0.89672              | 無                           | 0.798 | 無    |
|   | 80      | 0.734                    | 無                                     | 1.32600              | 有                           | 1.178 | 有    |
|   | 90      | 1.107                    | 有                                     | 1.90000              | 有                           | 1.685 | 有    |

| 表九 | 破壞指婁 | 文分析結 | 果總表 |
|----|------|------|-----|

圖十五為考量不同風速下,各模型之應力分 佈圖及以蔡吳法則所得之最大破壞指數部 位。由於文獻(陳興加 2007)建議之葉片材料參 數相對強度較高,故當風速提升近 90 m/sec 時已有破壞疑慮;依文獻(林輝政 2010)設定之 葉片材料則於風速 80 m/sec 時已產牛破壞疑 慮;而本研究之葉片材料係採現地材料取樣試 驗後之真實性質,亦於風速 80 m/sec 時產生破 壞疑慮。從分析結果發現,受 53.4 m/sec 之風 速作用時, 文獻(陳興加 2007)、(林輝政 2010) 與本研究模型皆無顯著之破壞疑慮。此外,本 研究不論採用何組參數所建立之模型,風速條 件達 70 m/sec 時,風機葉片主體結構並無破壞 疑慮,符合原廠之設計耐風速。表九歸納綜整 各風速條件下,葉片模型對應之最大破壞指數 與破壞疑慮。

綜合以上分析所示,各葉片模型之抗風能 力略有些微差異,發現其決定性因素取決於 「材料性質」與「複合性材料厚度」兩項,詳

#### 述如下:

#### (1) 材料性質

就葉片材料性質而言,文獻(陳興加 2007) 建議之材料強度為三者之最;本研究依真實材 料特性設定,強度介於三者之中。就葉片材料 層數而言,文獻(林輝政 2010)採用單一材料 (GFRP)模擬整體風機葉片,與本案實際風機葉 片之三明治結構較為不符;文獻(陳興加 2007) 建議模型之複合材料由表層、玻璃纖維及巴沙 木組合而成;本研究則參照真實風機葉片之材 料組成,分別為表層、玻璃纖維及聚乙烯組合 並由材料試驗所得參數輸入模型。因此,材料 強度之差異,為影響不同破壞狀況的主要因 素。

#### (2) 複合材料厚度

依文獻(林輝政 2010)建議參數所建立之 葉片模型,各積層係由單一材料模擬,故其材 料厚度僅能採用單層模擬,較不符合風機葉片 之真實情況;依文獻(陳興加 2007)建議參數所 建立之模型,由表層、玻璃纖維及巴沙木組合 成複合材料,各材料之厚度係參照該文獻之建 議設定;本研究參數則由表層、玻璃纖維及聚 乙烯組合成複合材料,而厚度之設定則經由鑽 孔之樣本,量測各部位風機葉片之實際斷面厚 度。而本研究模型與文獻(陳興加 2007)之模型 迥異之處在於葉片中間層之材料種類與厚度設 定;文獻(陳興加 2007)選用巴沙木,其厚度設 定較厚,而本研究則選用聚乙烯且厚度較薄。 厚度設定會影響應力集中與破壞位置之不同。

| 風速      | 採文獻(陳興加 2007)材料參數                    | 採文獻(林輝政 2010)材料參數                   | 大研究计划会数档刑                          |  |
|---------|--------------------------------------|-------------------------------------|------------------------------------|--|
| (m/sec) | 模型                                   | 模型                                  | 本·// 九村 什 // 数 供 至                 |  |
| 50      | Tsai-wu failure criterion : 0.165537 | Tsai-wu failure criterion : 0.36089 | Tsai-wu failure criterion : 0.323  |  |
| 53.4    |                                      |                                     | The internation is 0,200           |  |
|         | Isai-wu failure criterion · 0.206808 | Isai-wu failure criterion - 0.44693 | Isai-wu failure criterion · 0.399  |  |
| 60      | Tsai-wu failure criterion : 0.282781 | Tsai-wu failure criterion : 0.58345 | Tsai-wu failure criterion : 0.521  |  |
| 70      |                                      |                                     | Teel and feiling critering 10,709  |  |
| 80      | Isal-Wu failure criterion - 0.467039 | Isat-wu faiture criterion - 0.89672 | 1 sai-wu failure criterion - 0.798 |  |
|         | Tsai-wu failure criterion : 0.734088 | Tsai-wu failure criterion : 1.32600 | Tsai-wu failure criterion : 1.178  |  |
| 90      |                                      |                                     |                                    |  |
|         | Tsai-wu failure criterion : 1.107    | Tsai-wu failure criterion : 1.90000 | Tsai-wu failure criterion : 1.685  |  |

圖十五 葉片應力分佈圖

# 5.6 風頻率與共振模態分析

本研究除採用等效應力模式分析外,亦進 一步考量風力造成之紊流情形對風機葉片產 生的結構共振現象,並從共振角度深入探討。 因風力對於風機葉片之作用屬動態負載,其負 載頻率內含影響風機葉片之共振狀態。本研究 中之振動頻率,係藉由軟體 ANSYS 中之模態 分析(modal analysis)求得,其基本原理為利用 有限元素法求解該葉片之振動方式,如下式 5-2 所示,目的為求出該風機葉片之自然振動 頻率與模態。

 $[M]{\ddot{u}}+[K]{u} = \{0\} \implies det([K]-\omega^2[M]) = 0$ (5-2)

其中「*M*」為該風機葉片結構體之質量,與材 料之組成及密度有關;「*K*」為該風機葉片結構 體之勁度,與材料性質、結構形狀及尺寸有 關。

共振型式係依據 ANSYS 分析結果,評斷 其為結構主體振動或局部振動。若風機葉片產 生局部振動時,於結構體較脆弱之處則可能產 生破損。值得注意的是,由局部/末端振動 3D 結構圖發現共振觸發位置與現地風機葉片實 際破損大致相符,表十為各模態對應之自然振 動頻率。當結構之自然振動頻率與外力負載頻 率相近時,會因共振效應使結構反應放大,長 期作用下,極易引致疲勞性損傷(Shirani and Härkegård 2011)。然而強風環境下之葉片結構 周圍外力負載頻率不易估算,文獻(Lam and Leung 2005)建議可依式 5-3 估算渦流(vortex) 頻率:

$$f \bullet \frac{U}{B} = 0.15 \tag{5-3}$$

由表十可知,依文獻(林輝政 2010)所建構 之結構系統主體振動頻率約在 1.077Hz 以下, 局部振動頻率則介於 1.128-1.485Hz,若以平 均值 1.25Hz 代入式 5-3 之渦流頻率,而渦流 之特徵長度則取受損處之葉片寬度 3.0 公尺, 由式 5-3 可知其對應流體速度約為 25m/sec。 換言之,平均風速為 25m/sec 時,葉片結構局 部共振即會產生,長期作用可能造成葉片表面 之裂縫損傷。

另以文獻(陳興加 2007)建議之參數模型 為例,其結構系統之主體振動頻率約在 0.726Hz 以下,局部振動頻率則介於 0.814-0.962Hz,若以平均值 0.9Hz 代入式 5-3 之渦流頻率,得其對應流體平均速度約為 18m/sec。

本研究模型結構系統之主體振動頻率約 在 0.532Hz 以下,局部振動頻率則介於 0.663-0.891Hz,若以平均值 0.7Hz 代入式 5-3 之渦流頻率,對應之流體平均速度約為 14m/sec。

|        | (陳興加 2007)     |        | (林輝政 2010) |          | 本研究模型         |   |
|--------|----------------|--------|------------|----------|---------------|---|
| 模態     | 頻率             | 模態     | 頻率         | ≤ 模態     | 頻率            |   |
| (Mode) | (Frequency)    | (Mode) | (Freque    | (Mode)   | (Frequency)   |   |
| 1      | (0.025         | 1      | 0.06       | 5 1      | ( 0.028       |   |
| 2      | 0.028          | 2      | 主    0.17  | 5 2      | 0.030         |   |
| 3      | 0.075          | 3      | 禮   0.19   | 6 3      | + 0.088       |   |
| 4      | 0.126          | 4      | 1 0.35     | 4 4      | $(\pm)$ 0.140 |   |
| 5      | 主<br>) 0.159   | 5      | 祝    0.54  | 2 5      | 體 [ 0.182     |   |
| 6      | 體 0.252        | 6      | 動 0.68     | 1 6      | 振 0.283       |   |
| 7      | 振 0.266        | 7      | 0.95       | 8 7      | 動 0.294       |   |
| 8      | <b>€</b> 0.318 | 8      | 1.07       | 7 8      | 0.322         |   |
| 9      | 0.355          | 9      | 1.12       | 8 9      | 0.400         |   |
| 10     | 0.467          | 10     | 1.24       | 9   句 10 | 0.507         |   |
| 11     | 0.469          | 11     | 1.33       | 8 部 11   | 0.517         |   |
| 12     | 0.592          | 12     | 1.38       | 4 [振] 12 | 0.532         | _ |
| 13     | 0.648          | 13     | 1.43       | 1 動 13   | 0.663 / 居     | 3 |
| 14     | 0.718          | 14     | 1.47       | 1 14     | 0.708         | R |
| 15     | 0.726 ) 局      | 15     | 1.48       | 5 15     | 0.781         |   |
| 16     | 0.814 部        | 16     | 1.54 ر     | 3 16     | 0.809    拼    | ā |
| 17     | 0.817 振        | 17     | + 1.56     | 9 17     | 0.826」重       | b |
| 18     | + 0.876        | 18     | 本    1.65  | 6 18     | 末 0.891       |   |
| 19     | 木 0.913 勤      | 19     | 端   1.68   | 5 19     | 0.922         |   |
| 20     | 端 0.962        | 20     | 振 1.75     | 9 20     | 师 0.930       |   |
| 21     | 振 [1.047       | 21     | 動 1.79     | 5 21     | 振 0.958       |   |
| 22     | 動 {1.061       | 22     | 1.83       | 0 22     | 動   [ 1.020   |   |
| 23     | 1.092          | 23     | 1.83       | 9 23     | 1.027         |   |
| 24     | 1.124          | 24     | 1.87       | 2 24     | 1.079         |   |

表十 各模態振動頻率

其中f為渦流頻率; B 為渦流特徵長度; U 為流體入流速度。

# 六、潛在致災因素探討

本節綜整前述資料複核、歷史災因回顧、 分析結果與研究發現,將風機葉片結構損傷的 可能主要致災因子分為:(A)葉片材料強度、 (B)風頻率與共振效應及(C)安裝施工階段 人為因素,並分項討論如後。

# 6.1 葉片材料強度

(1) 複層材料破壞分析檢核

本研究依白努力定理與經驗參數修正後 將平均風速轉換為作用於葉片主體上之等效 靜力,然而本案葉片之結構力學性質與材料組 成因原廠供應商並未能提供,故進行現地風機 材料取樣及實驗室試驗,且同步以文獻(陳興 加 2007)與(林輝政 2010)所建議之葉片力學性 質與材料組成構造分別進行分析與比較。在獲 取結構元素之拉壓應力與剪切應力後,以蔡吳 法則(Van Paepegem and Degrieck 2003)判斷葉 片複層材料之破壞區域,風速設定則由 5-5 節 所述之六種條件進行模擬。 若採文獻(陳興加 2007)所建議之材料性 質,風機葉片於風速 90 m/sec 時已產生主體結 構破壞,主要集中於根部腹板間之箱型樑翼樑 蓋(spar cap);若採文獻(林輝政 2010)建議之材 料性質,風機葉片於風速 80 m/sec 時已產生破 壞,其位置主要集中於根部與中央腹板間之箱 型樑翼樑蓋;而本研究案之葉片材料選用實際 受損葉片之材料性質,風機葉片於風速 80 m/sec 時亦產生破壞,其破壞位置則主要位於 葉片後緣靠近翼板之區域。

本研究進一步針對颱風期間最大瞬間風 速 53.4 m/sec 條件下進行模擬(如圖十五),分 析結果顯示模型於文獻(陳興加 2007)、(林輝 政 2010)及本研究三者之參數設定下皆未產生 顯著破壞疑慮。

(2) 施工綱要規範所載明之葉片規格與強度

根據施工綱要規範中風力發電機組及其 附屬設備工作要領之設計條件中提及「耐風速 ---70m/sec以上」,經本研究透過 3D 有限元素 法進行之結構分析結果顯示,葉片主體結構應 可在風速 70m/sec 之環境下維持其完整性,因 此僅 53.4m/sec 之風速在無其他外力作用下造 成葉片主體結構直接破壞之可能性較低。

## 6.2 風頻率及共振效應

依前文 5-6 節之分析結果可知,採用文獻 (林輝政 2010)建議材料參數之葉片模型,其渦 流頻率對應流體平均風速約為 25 m/sec;文獻 (陳興加 2007)建議之材料參數,其對應平均風 速約為 18m/sec;以本研究模型而言,對應平 均風速約為 14m/sec。換言之,在上述風速長 期作用下,葉片之局部結構與渦流之共振效應 可能造成局部共振而造成材料疲勞引致之表 面剝離與裂縫損傷,本研究分析結果亦發現模 態振動位置與損傷位置相符。

綜合 5-5 節等效靜力分析結果與 5-6 節共 振效應推論,於本研究所設定之葉片材料性質 條件下,風機葉片於風速 53.4 m/sec(颱風期間 瞬間最大風速)或 70m/sec(風機設計最大風速) 對應之等效靜力作用時其材料強度應足以抵 抗主體振動,故葉片損傷之主要原因可推斷為 渦流所引致之局部共振效應導致翼緣振盪而 造成。

## 6.3 安裝施工階段人為因素

由國際歷史風機災損經驗顯示,安裝施工 階段須檢核承包商於運輸、吊裝之操作過程中 之文件記錄和自主檢查表中之各個工作項目 是否良好且經施工安檢人員確認核可。一般風 機工程安裝案之構件係從工廠製造後運送至 工址,其中最脆弱之零件就屬風機葉片,在運 送階段可能因為不當之操作而造成損壞,也可 能在裝配時因施工不慎造成損傷,葉片從拖車 水平放置到旋轉呈垂直形式吊掛至轉子時,若 未適當的保護延伸葉片,亦可能造成損傷。

經查#11、#12、#14、#15、#23 等五組風 力機組之「安裝施工記錄」後,顯示吊裝過程 及試運轉中皆經現場人員仔細檢核並簽章負 責,故應可排除工程於施工階段發生運輸、吊 裝途中可能引致的葉片表面剝離或裂縫。

# 七、結論與建議

本文最後從結構分析、振動模態、環境風 場與耐風設計規範等觀點,歸納以下結論並提 出建議。

# 7.1 結論

本研究模擬葉片主體結構在承受不同風 速吹襲下之反應,分析結果發現葉片可承受風 速 70m/sec,超過薔密颱風侵襲時經由風機運 轉記錄所測得之最高風速 53.4m/sec,故在颱 風期間若無其他外力作用下應無法導致葉片 結構出現損壞情形。 本研究續從「局部共振效應」進行探討, 考量風速並非恆久穩定狀態,模擬一系列振動 模態之頻率,同時採用文獻建議(陳興加 2007; 林輝政 2010)及實際材料試驗結果,建立三組 風機葉片模型,分析結果顯示:

(1) 文獻(陳興加 2007)參數模型:

共振頻率平均值 0.9Hz 對應平均風速→18 m/sec。

(2) 文獻(林輝政 2010)參數模型:

共振頻率平均值 1.25Hz 對應平均風速 →25 m/sec。

(3) 本研究參數模型:

共振頻率平均值 0.7Hz 對應平均風速 →14 m/sec。

研究發現葉片結構受渦流影響產生局部 共振效應,在長期作用下可能造成葉片材料疲 勞引致局部之裂縫損傷與剝離,分析圖型顯示 與本案風機葉片表層實際受損之部位吻合。換 言之,若葉片承受之長期風速落於上述區間 時,可能發生葉片翼緣振盪(Ekelund 2000)之 情形,產生共振效應漸進式破壞。

## 7.2 建議

根據模擬結果顯示,本案之風機葉片應可 承受薔密颱風侵襲時所量測之最大風速 (53.4m/sec),然實際情形風機葉片之破壞仍然 出現於葉片後緣近翼版之區域,此區域之破壞 大多係表面與蒙皮層接合處之損傷,顯示此區 域局部材料消耗耐久性偏弱。意即雖然風機葉 片整體結構可承受設計規範 70m/sec 以上之風 速,然並未考慮蒙皮層接合處弱面因長期風力 效應下產生裂痕或剝離,故建議未來類似工程 招標時可要求廠商提供風機葉片蒙皮層材料 之耐久性資料,避免一般運轉或颱風期間承受 強烈風速之侵襲時引致蒙皮層的漸進破壞。

共振效應對於各項工程結構體皆存在相 當風險,鑒於原廠設計不易變更之考量,建議 業主應於施工前要求廠商提出共振頻率範圍 之模擬數據供設計單位參量,並於工程施作完 成後持續監測風場。以本案為例,可規劃監測 風速及風頻率,並於可能產生共振效應頻率之 區間設定預警機制系統,以顧及其長期運轉安 全性。並建議業主應導入預防性定期維護觀 念,藉由平日定期性之維護工作延長風機葉片 使用壽命。本研究經由經驗公式推算渦流頻率 對應之風速仍尚有未完善之處,未來祈由風洞 試驗獲得現地之風場渦流資料,將更有助於建 立預警機制之頻率區間。

本災損地點之週遭環境幅員遼闊,周圍多 為荒涼濕地。當強風吹襲風力機組時,可能產 生橫向風力效應,風機原廠設計中未見其將橫 向風力效應可能造成之影響納入考慮,包括尾 跡風馳效應(wake galloping)、渦流顫動效應 (vortex shedding)、渦流鎖定效應(vortex lock-in) 等,因此建議日後施作類似之風力機組工程 時,應要求設計單位提出上述之橫向風力效應 提供參考,以利工程施工單位了解橫向風效應 對於風力機組葉片之影響,亦可將試驗資料回 饋於施工規範中,確保工程品質,減少類似災 損發生。

此外,於原廠設計書中,並未見其針對國 內相關之風力規範進行評估。考量地域性風場 的差異,各國皆有其特定規範,建議設計單位 應根據國內耐風設計規範複核,並且於施工前 要求廠商提供風力機組製造商對於施工環境 風場特性與目前相關法規中訂定之風力規範 提出品質聲明與分析檢核結果,避免因不同之 規範產生不同標準導致設計與施工文件不符 而混淆,確保風力機組之安全性符合國內風場 特性相關規範與法令。

# 八、參考文獻

 ANSYS Inc. (2006). "ANSYS Programmer's Manual." Canonsburg, Pennsylvania, USA.
 Athiniotis, N., Lombardo, D., and Clark, G. (2009). "On-site aspects of a major aircraft accident investigation." *Engineering Failure Analysis*, 16(7), 2020-2030.

- 3.Athiniotis, N., Lombardo, D., and Clark, G. (2010). "Scientific analysis methods applied to an investigation of an aircraft accident." *Engineering Failure Analysis*, 17(1), 83-91.
- 4.Brown, S. (2007). "Forensic engineering: Reduction of risk and improving technology (for all things great and small)." *Engineering Failure Analysis*, 14(6), 1019-1037.
- 5.Bureau of Standards Metrology & Inspection, M. O. E. A., R.O.C. (2005). "Method of Test for Tensile Properties of Glass Fiber Reinforced Plastics." *Chinese National Standards, CNS.*
- 6.C. Roarty, J., J. Sivak, P. Vogel, and K.V. Ramachandran (2006). "South Clear Well Roof Collapse: Hydraulic Uplift or Excessive Construction Loading?" *The Fourth Forensic Engineering Congress*Cleveland, Ohio, P.210-224.
- 7.Chen, D. H., Harris, P., Scullion, T., and Bilyeu, J. (2005). "Forensic investigation of a sulfate-heaved project in Texas." *Journal of Performance of Constructed Facilities*, 19(4), 324-330.
- 8.陳興加,複合材料應用於風車葉片之研究,國立成功大學航空太空工程學系,碩 士在職專班論文,2007。
- 9.Choi, H. H., and Mahadevan, S. (2008).
  "Construction project risk assessment using existing database and project-specific information." *Journal of Construction Engineering and Management*, 134(11), 894-903.
- 10.Chou, J.-S., and Tu, W.-T. (2011). "Failure analysis and risk management of a collapsed large wind turbine tower." *Engineering Failure Analysis*, 18(1), 295-313.
- 11.Ekelund, T. (2000). "Yaw control for reduction of structural dynamic loads in wind

turbines." Journal of Wind Engineering and Industrial Aerodynamics, 85(3), 241-262.

- 12.Farrahi, G. H., Tirehdast, M., Masoumi Khalil Abad, E., Parsa, S., and Motakefpoor, M. (2011). "Failure analysis of a gas turbine compressor." Engineering Failure Analysis, 18(1), 474-484.
- 13.Hou, J., Wicks, B. J., and Antoniou, R. A. (2002). "An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis." Engineering Failure Analysis, 9(2), 201-211.
- 14.http://www.caithnesswindfarms.co.uk/p age4.htm "Summary of Wind Turbine Accident, Accessed on 30/06/2011."
- 15.黃恆傑,高科技廠房綠建築設計指標可行 性分析,國立台灣大學土木工程學研究所, 碩士論文,2008。
- 16.IEA (2009). "World Energy Outlook 2009 " http://www.iea.org/, Accessed on 10/11/2009.
- 17.Khalaf, A. M., and Seibi, A. C. (2011).
  "Failure analysis of lube oil feed tube of a gas turbine operating in oil fields." Engineering Failure Analysis, 18(5), 1341-1350.
- 18.López Gayarre, F., González-Nicieza, C., Alvarez-Fernández, M. I., and Álvarez-Vigil, A. E. (2009). "Forensic analysis of a pile foundation failure." Engineering Failure Analysis, 17(2), 486-497.
- 19.Lam, K. M., and Leung, M. Y. H. (2005).
  "Asymmetric vortex shedding flow past an inclined flat plate at high incidence." European Journal of Mechanics - B/Fluids, 24(1), 33-48.
- 20.林輝政,彰工風力葉片受損肇因評估分析 期末報告,國立台灣大學嚴慶齡工業發展基 金會合設工業研究中心,2010。
- 21.Marín, J. C., Barroso, A., París, F., and Cañas,J. (2009). "Study of fatigue damage in wind

turbine blades." Engineering Failure Analysis, 16(2), 656-668.

- 22.Mazur, Z., Garcia-Illescas, R., Aguirre-Romano, J., and Perez-Rodriguez, N. (2008). "Steam turbine blade failure analysis." Engineering Failure Analysis, 15(1–2), 129-141.
- 23.Noon, R. K. (2000). Forensic Engineering Investigation CRC, Hiawatha.
- 24.Prasad Rao, N., Samuel Knight, G. M., Mohan, S. J., and Lakshmanan, N. (2012).
  "Studies on failure of transmission line towers in testing." Engineering Structures, 35(0), 55-70.
- 25.Sankar, S., Nataraj, M., and Raja, V. P. (2011). "Failure analysis of shear pins in wind turbine generator." Engineering Failure Analysis, 18(1), 325-339.
- 26.風機葉片材料抗拉強度及伸長率試驗,Test report HV-11-05101X,SGS 台灣檢驗科技股 份有限公司,2011。
- 27. 風機葉片材料試驗報告, Test report HL80432/2011, SGS 台灣檢驗科技股份有 限公司, 2011。
- 28.Shirani, M., and Härkegård, G. (2011). "Large scale axial fatigue testing of ductile

cast iron for heavy section wind turbine components." Engineering Failure Analysis, 18(6), 1496-1510.

- 29.台灣電力公司,風速運轉紀錄表,台電公司彰濱風機葉片案資料,2009。
- 30. Van Paepegem, W., and Degrieck, J. (2003).
  "Calculation of damage-dependent directional failure indices from the Tsai-Wu static failure criterion." Composites Science and Technology, 63(2), 305-310.
- 31.Vestas, "Blades 947919.R2 "台電公司彰濱 風機葉片案資料, vol. 1-5, 2003.
- 32. Yates, J. K., and Lockley, E. E. (2002).
  "Documenting and analyzing construction failures." Journal of Construction Engineering and Management, 128(1), 8-17.
- 33.Young Ku, Y.-S. S. (2009). "Analysis of sustainable energy development situation."
  2009 Series of Reports of the National Energy Conference, Bureau of Energy, Ministry of Economic Affairs, Taipei.
- 34.Zimmer, A. S., Bell, G.R. (2006). "John Hancock Center Scaffold Collapse." The Fourth Forensic Engineering Congress, Simpson Gumpertz and Heger, Inc., Cleveland, Ohio, P.97-111.

